Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Artículo en Inglés | Scopus | ID: covidwho-20243842

RESUMEN

This paper introduces the improved method for the COVID-19 classification based on computed tomography (CT) volumes using a combination of a complex-architecture convolutional neural network (CNN) and orthogonal ensemble networks (OEN). The novel coronavirus disease reported in 2019 (COVID-19) is still spreading worldwide. Early and accurate diagnosis of COVID-19 is required in such a situation, and the CT scan is an essential examination. Various computer-aided diagnosis (CAD) methods have been developed to assist and accelerate doctors' diagnoses. Although one of the effective methods is ensemble learning, existing methods combine some major models which do not specialize in COVID-19. In this study, we attempted to improve the performance of a CNN for the COVID-19 classification based on chest CT volumes. The CNN model specializes in feature extraction from anisotropic chest CT volumes. We adopt the OEN, an ensemble learning method considering inter-model diversity, to boost its feature extraction ability. For the experiment, We used chest CT volumes of 1283 cases acquired in multiple medical institutions in Japan. The classification result on 257 test cases indicated that the combination could improve the classification performance. © 2023 SPIE.

2.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Artículo en Inglés | Scopus | ID: covidwho-20240716

RESUMEN

This paper proposes an automated classification method of COVID-19 chest CT volumes using improved 3D MLP-Mixer. Novel coronavirus disease 2019 (COVID-19) spreads over the world, causing a large number of infected patients and deaths. Sudden increase in the number of COVID-19 patients causes a manpower shortage in medical institutions. Computer-aided diagnosis (CAD) system provides quick and quantitative diagnosis results. CAD system for COVID-19 enables efficient diagnosis workflow and contributes to reduce such manpower shortage. In image-based diagnosis of viral pneumonia cases including COVID-19, both local and global image features are important because viral pneumonia cause many ground glass opacities and consolidations in large areas in the lung. This paper proposes an automated classification method of chest CT volumes for COVID-19 diagnosis assistance. MLP-Mixer is a recent method of image classification using Vision Transformer-like architecture. It performs classification using both local and global image features. To classify 3D CT volumes, we developed a hybrid classification model that consists of both a 3D convolutional neural network (CNN) and a 3D version of the MLP-Mixer. Classification accuracy of the proposed method was evaluated using a dataset that contains 1205 CT volumes and obtained 79.5% of classification accuracy. The accuracy was higher than that of conventional 3D CNN models consists of 3D CNN layers and simple MLP layers. © 2023 SPIE.

3.
Medical Imaging 2022: Computer-Aided Diagnosis ; 12033, 2022.
Artículo en Inglés | Scopus | ID: covidwho-1923080

RESUMEN

This paper proposes an automated classification method of chest CT volumes based on likelihood of COVID-19 cases. Novel coronavirus disease 2019 (COVID-19) spreads over the world, causing a large number of infected patients and deaths. Sudden increase in the number of COVID-19 patients causes a manpower shortage in medical institutions. Computer-aided diagnosis (CAD) system provides quick and quantitative diagnosis results. CAD system for COVID-19 enables efficient diagnosis workflow and contributes to reduce such manpower shortage. This paper proposes an automated classification method of chest CT volumes for COVID-19 diagnosis assistance. We propose a COVID-19 classification convolutional neural network (CNN) that has a 2D/3D hybrid feature extraction flows. The 2D/3D hybrid feature extraction flows are designed to effectively extract image features from anisotropic volumes such as chest CT volumes for diagnosis. The flows extract image features on three mutually perpendicular planes in CT volumes and then combine the features to perform classification. Classification accuracy of the proposed method was evaluated using a dataset that contains 1288 CT volumes. An averaged classification accuracy was 83.3%. The accuracy was higher than that of a classification CNN which does not have 2D and 3D hybrid feature extraction flows. © 2022 SPIE.

4.
10th International Workshop on Clinical Image-Based Procedures, CLIP 2021, 2nd MICCAI Workshop on Distributed and Collaborative Learning, DCL 2021, 1st MICCAI Workshop, LL-COVID19, 1st Secure and Privacy-Preserving Machine Learning for Medical Imaging Workshop and Tutorial, PPML 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 ; 12969 LNCS:88-97, 2021.
Artículo en Inglés | Scopus | ID: covidwho-1565295

RESUMEN

This paper proposes a segmentation method of infection regions in the lung from CT volumes of COVID-19 patients. COVID-19 spread worldwide, causing many infected patients and deaths. CT image-based diagnosis of COVID-19 can provide quick and accurate diagnosis results. An automated segmentation method of infection regions in the lung provides a quantitative criterion for diagnosis. Previous methods employ whole 2D image or 3D volume-based processes. Infection regions have a considerable variation in their sizes. Such processes easily miss small infection regions. Patch-based process is effective for segmenting small targets. However, selecting the appropriate patch size is difficult in infection region segmentation. We utilize the scale uncertainty among various receptive field sizes of a segmentation FCN to obtain infection regions. The receptive field sizes can be defined as the patch size and the resolution of volumes where patches are clipped from. This paper proposes an infection segmentation network (ISNet) that performs patch-based segmentation and a scale uncertainty-aware prediction aggregation method that refines the segmentation result. We design ISNet to segment infection regions that have various intensity values. ISNet has multiple encoding paths to process patch volumes normalized by multiple intensity ranges. We collect prediction results generated by ISNets having various receptive field sizes. Scale uncertainty among the prediction results is extracted by the prediction aggregation method. We use an aggregation FCN to generate a refined segmentation result considering scale uncertainty among the predictions. In our experiments using 199 chest CT volumes of COVID-19 cases, the prediction aggregation method improved the dice similarity score from 47.6% to 62.1%. © 2021, Springer Nature Switzerland AG.

5.
Progr. Biomed. Opt. Imaging Proc. SPIE ; 11597, 2021.
Artículo en Inglés | Scopus | ID: covidwho-1177493
6.
Progr. Biomed. Opt. Imaging Proc. SPIE ; 11597, 2021.
Artículo en Inglés | Scopus | ID: covidwho-1177489
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA